FINAL DRAFT AMENDED KERN COUNTY SUBBASIN GROUNDWATER SUSTAINABILITY PLAN

AUGUST 2024

OVERVIEW

- Basin overview
- 2024 Amended Subbasin Plan (2024 Plan) Overview
- Response to SWRCB Draft Staff Report

SUBBASIN PERSPECTIVE

- I.782 million acres the largest Subbasin in the State
- Subbasin is hydro-geologically complex
- Based on acreage, the following could fit within the Kern County Subbasin:
 - o 40 of the 71 approved basins across California, or
 - o 6 of the 9 of the approved basins in the Central Valley, or
 - 4 of the other Inadequate subbasins (Tule, Tulare Lake, Kaweah, and Chowchilla) combined
- Over 25 water agencies represented

FINAL DRAFT AMENDED 2024 SUBBASIN PLAN

- Coordinated development by experts and principals from 7 of the top groundwater consulting firms in the State.
- Significantly improved coordination across the Subbasin, the largest in the State.
- Consistent data and technically sound methodologies across the Subbasin.
- Revised sustainable management criteria, including undesirable results, to be more protective.
- Coordinated Projects and Management Actions to achieving the Sustainability Goal.
- Funding an operational well mitigation program by 2025.

2024 PLAN: GUIDING PRINCIPLES

- Commitment to Subbasin
 Sustainability and Coordination
- Address DWR Deficiencies
- Protect Beneficial Uses and Users
- Prioritize Demand Management
- Recognize Hydrogeologic
 Conceptual Model (HCM) Areas

EXTENSIVE STAKEHOLDER OUTREACH

Wells: Kern County Environmental Health & Division of Drinking Water

SDACs: GSAs & GSA group committees with CSD representation

Well Monitoring & Mitigation: Kern Water Collaborative & Self-Help Enterprises

> **Direct outreach:** landowner meetings

Subsidence: Friant Water

Authority & California Aqueduct Subsidence Program

Inter-basin Coordination:

White Wolf, Tule, Tulare Lake

Scan me for draft 2024 GSPs

BASIN HYDROGEOLOGIC CONCEPTUAL MODEL

- § 351. (aa) "Principal aquifers" refer to aquifers or aquifer systems that store, transmit, and yield significant or economic quantities of groundwater to wells, springs, or surface water systems.
- "Because of the heterogeneous character of most unconsolidated alluvial deposits, confinement in them is commonly a matter of degree...where the Corcoran is thin or absent... there is direct hydraulic interaction.." – USGS Open File Report 63-47.
- The Corcoran Clay is only understood to be "competent" in around 10% of the Kern Subbasin, in areas with notably few groundwater beneficial users.
- The remainder of the Corcoran and other clay layers are deep, "leaky", discontinuous and otherwise consistent with the definition of a single principal aquifer system.

UNDERSTANDING OF SUBBASIN GEOLOGY

- Complex geology present across Subbasin
 - Aquifer, discontinuous aquitards and clay layers
 - Geologic structures
 - Local and regional variations in water levels and quality
- Defined three principal aquifers
 - Primary Alluvial
 - Santa Margarita
 - Olcese

UNDERSTANDING GROUNDWATER FLOW

- Groundwater flow patterns reflect:
 - Recharge and outflow areas
 - Geologic features that influence groundwater flow
 - Hydraulically connected "unconfined" and "confined" areas
- Appropriateness of 2024 Plan Approach
 - Reflects local and regional flow patterns
 - Represents groundwater level variability
 - Consistent with decades of interpretation and modeling of the occurrence and flow of groundwater in the Subbasin

REPRESENTATIVE MONITORING

I94 RMWs to represent groundwater elevations

 52 RMWs to represent groundwater quality (41 are also water level RMWs)

PROTECTIVE SUSTAINABLE MANAGEMENT CRITERIA

Chronic Lowering of GW Levels

- Revised SMCs definition
 - MOs changed by +11 feet on average
 - MTs changed by +21 ft on average
 - Reduced number of impacted domestic wells from 390 to 77 "most likely" impacted based on modeling scenario
- Subbasin-wide well impacts analyses
- MT Exceedance Policy

Degraded Water Quality

- COCs: Arsenic, nitrate, nitrite, nitrate+nitrite, TDS, 1,2,3-TCP, uranium
- Revised SMCs definition
- Established semi-annual sampling
- Revised RMWs
- MT Exceedance Policy

Land Subsidence

Revised SMCs definition

- Site-specific SMCs established along Critical Infrastructure
- SMCs established across the entire Subbasin, based on an average across the HCM Area.
- Subbasin-wide change in slope analysis along critical infrastructure
- MT Exceedance Policy

Does not apply to the Subbasin

Reduction of GW Storage

- Using groundwater levels as proxy
- Calculated a range of total useable groundwater storage
- Specified a UR definition

- A few areas with potential ISWs connection is likely transient, short-lived, and involves shallow or perched groundwater that is not part of the principal aquifer systems, so therefore does not apply
- Will re-assess after full DWR guidance on ISWs is released

GROUNDWATER LEVEL SMCs

- The GSAs defined Undesirable Results (URs) as 15 dewatered drinking water wells/year (cumulative max of 255 wells by 2040).
- Per § 354.26: (C) GSAs and the TWG then conceptualized numerous potential SMC methods including methods approved by DWR in neighboring subbasins.
- Based on technical analysis including well impacts, gradients, margin of operational flexibility, etc. the TWG assessed these potential SMC methods.
- Selected the SMC approach that best aligned with the SGMA regulations, addressed GSA & stakeholder concerns, could be applied Subbasin-wide, and avoided URs.

GW LEVEL SMCs ARE REASONABLE & PROTECTIVE

- Raised MTs an average of over 20 ft
- Protective of beneficial users and other sustainability indicators
- Developed consistent with GSP regulation and using common data and methodologies
- Mirrors approach approved by DWR in other basins
- Reflect HCM-specific groundwater conditions and trends
- Do not result in unreasonable gradients relative to current and historical water levels within and between basins

BENEFICIAL USER INVENTORY

- 2024 Plan presents a detailed review of the water sources, supplies, and relationships between GSAs and local public water suppliers
- Analysis in 2024 Plan informed by comprehensive Subbasin-wide Well Inventory / Beneficial users

User Type	OSWCR Database	USGS Dataset	Kern Subbasin Well Inventory*
Agricultural/Irrigation	4,443	I,286	4,290
Industrial	275	62	97
Municipal/Public	245	214	298
Small Community ¹			41
Domestic	2,397	2,222	2,501
Other/Unknown	3,677	145	
Total Wells	11,037	4,244	7,227

ANALYSIS OF DRINKING WATER WELL AND DEPLETION OF SUPPLY IMPACTS

- I. Potential "worst-case" scenario: All RMWs exceed the MTs
- 2. Bracketed the potential impacts: Assume the 46 RMWs (25%) with the most and least nearby drinking water wells exceed the MTs
- 3. Stochastic prediction of potential well impacts: Ran 5,000 realizations of potential RMW combinations exceeding MTs
- 4. Most likely condition: Used Basin Groundwater Model to estimate well impacts under 2030 climate change conditions (shows which RMWs are most likely to exceed MTs and the associated well impacts)

NO SIGNIFICANT AND UNREASONABLE IMPACTS ARE PROJECTED TO OCCUR

Under a random selection (5,000 iterations) where 25% of the RMWs were to reach their MTs, an estimated **103** drinking water wells, or 2% of the urban water supply, would be impacted.

NO SIGNIFICANT AND UNREASONABLE IMPACTS ARE PROJECTED TO OCCUR

* Impacts assessed on May 3, 2024 well inventory.

Projected modeled conditions suggest that between 13 and 77 drinking water wells, or less than 1.3% of the urban water supply, would be impacted.

SUBBASIN MT EXCEEDANCE POLICY

- Establishes protocols and guidelines for GSAs to investigate exceedance of MTs at RMWs following data collection identification of a MT Exceedance (reported to GSAs through DMS).
- Each GSA is responsible for: monitoring GW conditions, complying with Subbasin Plan requirements, coordinating with other agencies, entities, and beneficial users within their boundaries
 - Requires GSAs to report MT Exceedances in Annual Reports
 - Reaffirms data collection protocols and policies
- Steps for identification, investigation, and involvement of the Subbasin Coordination Committee to consider actions to prevent continued exceedance.

SUBBASIN DOMESTIC WELL MITIGATION PROGRAM

- Subbasin initiated contract negotiations with Self-Help Enterprises for implementation of a Subbasinwide Domestic Well Mitigation Program and Kern Water Collaborative for water quality
 - Implementation by January 2025

SUBSIDENCE

- Subsidence in the Kern Subbasin is driven by multiple factors: groundwater pumping, O&G activities, subsidence outside the Kern subbasin, and natural geologic/seismic/geotechnical factors.
- 2024 Plan uses a regional coordinated risk-based approach for development of SMCs and URs.
- Protective of significant and undesirable impacts on regional and GSA-specific infrastructure and includes GSA mitigation for the FKC.
- Subsidence (driven by GSA-related activities) to be minimized by 2040 and groundwater levels stabilized by 2030.
- Approach supported by FWA and CASP.

WATER QUALITY

- Applied SWRCB recommended methodology to evaluate the Constituents of Concern (COCs).
- 6 COCs will be monitored semi-annually
 - Of the 54 wells, 18 are public supply wells and 8 used to represent ILRP first encounter groundwater conditions.
 - Samples collected within 2 weeks of water level measurements for a clear correlation between water level and quality changes.
- Annual water quality reports will also include data collected for drinking water and ILRP compliance to cover the full list of SWRCB COCs.
- MT Exceedance Policy applies to water quality.
- Partnerships with Kern Water Collaborative and Self-Help Enterprises will be leveraged to ensure mitigation is consistent and comprehensive with other programs.

INTERCONNECTED SURFACE WATER (ISW)

- 2024 Plan systematically evaluated ISWs based on the best available data in accordance with the GSP regulations (§ 354.16 (f)) and available DWR Guidance.
- Subbasin GSAs relied on existing ISW mapping including:
 - Natural Communities Commonly Associated with Groundwater (NCCAG) dataset
 - ICONS: Interconnected Surface Water in the Central Valley
- There are no Groundwater Dependent Ecosystems (GDEs) and undesirable results from ISWs are identified as not present and are not likely to occur.
- Subbasin GSAs plan to review and incorporate forthcoming DWR Guidance (when available) for inclusion in future periodic evaluations.

WATER BANKING

- Banking projects are an essential recharge component in the Subbasin – many have been operating successfully for over 25 years.
- Banking projects conserve surplus surface water supplies in wet years to provide water supplies in dry years thereby reducing overdraft pumping.
- Banking projects only recover previously stored supplies after appropriate losses have been applied
- Banking projects have resulted in improved groundwater levels and quality and are a critical part of the sustainability of the Kern Subbasin and the State.

PROJECTS & MANAGEMENT ACTIONS

- I30 P/MAs with ~800,000 AFY of projected benefit relative to 372,000 AFY of projected deficit.
- 80% of benefit achieved through Demand Management.

SOME CONCERNS WITH DRAFT STAFF REPORT

- ~200 pages focused on the 2020 and 2022 GSPs, with only 2 pages dedicated to a cursory review of 2024 Plan.
- The potential corrective actions identified have already been addressed in the 2024 Plan.
- Report identifies seven more deficiencies than DWR; all have been addressed in the 2024 Plan.
- Comments on the 2024 Plan were not previously raised by the SWRCB staff during ~20 hours of meetings; no supporting data or analysis are provided to justify conclusions.
- Prematurely recommends Subbasin for probation.

CLOSING REMARKS

- The 2024 Plan was submitted to the SWRCB to review in May 2024 and is available for public review and comment.
- The 2024 Plan is SGMA compliant, addresses the DWR Corrective Actions, and incorporates the feedback provided by SWRCB staff.
- The Kern County Subbasin GSAs are committed to ongoing and coordinated SGMA implementation.
- The Subbasin GSAs welcome the opportunity to continue to coordinate with SWRCB with what we hope is a shared goal to have the Subbasin achieve sustainability and avoid probation.

THANK YOU!

